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Abstract. The viscous incompressible flow in a wedge between a rigid plane and a surface of constant shear
stress is calculated by use of the Mellin transform. For wedge angles below a critical value the asymptotic solution
near the vertex is given by a local similarity solution. The respective stream function grows quadratically with the
distance from the origin. For supercritical wedge angles the similarity solution breaks down and the leading order
solution for the stream function grows with a power law having an exponent less than two. At the critical angle
logarithmic terms appear in the stream function. The asymptotic dependence of the stream function found here is
the same as for the ‘hinged plate’ problem. It is shown that the validity of the Stokes flow assumption is restricted
to a vanishingly small distance from the vertex when the wedge angle is above critical and when the region of
nonzero constant shear stress is extended to infinity. The relevance of the present result for technical flow systems
is pointed out by comparison with the numerically calculated flow in a thermocapillary liquid bridge.
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1. Introduction

Fluid flow in wedges is a fundamental problem in fluid mechanics. It can be traced back
to Taylor [1, 2] who considered the scraping of a viscous fluid from a plane surface. Mof-
fatt [3] extended the analysis to incompressible flows in infinite wedges satisfying different
sets of boundary conditions. He derived simple similarity solutions for a number of Stokes
flow wedge problems. While for some problems like,e.g., the flow in a rigid corner the
local similarity solution is valid for all wedge anglesα, the similarity solution breaks down,
i.e. the stream function diverges, for other wedge flow problems when the wedge angle ap-
proaches a critical value. Among these latter problems are the pressure driven flow along a
cylindrical tube whose cross-section has a sharp corner, or the ‘hinged plate’ problem. Both
configurations have been treated by Moffatt and Duffy [4].

Stokes flow in corners has also been studied by other authors. Recently, Anderson and
Davis [5] considered viscous flow in a wedge made up by one rigid and one stress-free
boundary. Moreover, local solutions and partially local solutions, the latter ones do not satisfy
all boundary conditions, were calculated for a rigid wedge where two immiscible viscous
fluids meet at the vertex. In a later paper the same authors investigated the flow near a tri-
junction including heat transfer and solidification [6]. Other boundary conditions have been
considered by Betelúet al. [7]. Neglecting surface tension they calculated the viscous flow
and its temporal evolution in a corner bounded by two stress-free surfaces initially forming
a sharp wedge. Neither of these studies, however, was devoted to the case when one wall is
subject to a given nonzero tangential stress.
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208 Hendrik C. Kuhlmann et al.

Here, we consider a problem similar to that of [4] which is motivated by the flow in
crystal growth melts. In the floating zone method [8], for instance, a melt volume is suspended
between two cylindrical solid rods of the same material, the temperature of which is close to
the melting point. The molten material forms a liquid bridge which is kept in place solely by
surface tension forces which are very high for liquid metals. Owing to the thermal conditions
near the contact point where liquid, solid, and ambient gas meet, the temperature drops from
the contact point and along the liquid/gas interface. The associated temperature gradients
can drive a significant fluid motion via the thermocapillary effect. The flow structure near
the contact point (contact line in three dimensions) is of particular importance for numerical
simulations, since a number of difficulties are encountered in that region.

First, the contact line represents a discontinuity of the boundary conditions which, in the
presence of even weak thermocapillary flow, leads to pressure peaks in the corner that can only
be balanced by surface tension. The situation is similar to that in the die-swell problem (see,
e.g.[9]). As a consequence, the curvature of the interface must become infinitely large at the
contact point. This problem is not present in the limit of infinitely large mean surface tension,
where the meniscus shape is determined independently of the flow field, and the corner region
may be modelled by a wedge made of a rigid isothermal plane wall and a thermocapillary
surface. To first order the temperature will vary linearly from the contact line and thus the
thermocapillary shear stress will be constant in a small neighborhood of that line.

The associated problem of creeping flow in an infinite wedge has a similarity solution
ψ ∼ r2, whereψ is the stream function andr the distance from the vertex [10]. The second
problem is that the similarity solution breaks down forα = αc [11, p. 323] and predicts a flow
reversal forα > αc. This counter-intuitive behavior of the Stokes flow solution motivated
Shevtsovaet al. [11] to numerically investigate the full nonlinear Navier-Stokes flow near the
corner. By successive subdivisions of the integration area forα = 135◦ > αc they did not
find, however, any flow reversal neither near the cold nor near the hot corner.

To resolve the latter problem we shall look for solutions that are not of self-similar type and
inquire about their asymptotic form forr → 0. The analysis follows closely that of Moffatt
[12] and Moffatt and Duffy [4]. The idea is the following. We transform the stream function
ψ(r, θ) of the real radial coordinater into a stream function̄ψ(p, θ) for a complex coordinate
p. Since this is achieved by an integral transform, the radial derivatives can be eliminated from
the differential equation by integrations by parts. We will be left with an ordinary differential
equation inθ which can be solved analytically. The solution is then transformed back into
physical space. The back-transformation involves a line integral in the complexp-plane which
can be closed at infinity and the solution can be expressed as a sum over the residues ofψ̄ . The
residue of the pole with the smallest real part determines the asymtotic behavior forr → 0.

The paper is organized as follows. First, we define the problem in Section 2 and present the
similarity solution in Section 3. The problem is then solved by use of the Mellin transform in
Section 4. In Section 5 we consider the asymptotic form of the solution forr → 0 and close
in Section 6 with a discussion of the results and a comparison with a full numerical solution
near the contact point.

2. Formulation of the problem

We consider the two-dimensional flow in a corner made by a rigid plane enclosing an angleα

with a flat surface along which a constant shear stress is exerted on the liquid (cf. Figure 1).
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Figure 1. Geometry of the problem.

It is assumed that the flow close to the vertex is slow and that it is governed by the Stokes
equation

∇4ψ(r, θ) = 0, (1)

for the stream functionψ , defined by

u = 1

r
∂θψ, v = −∂rψ, (2)

wherer andθ are polar coordinates andu andv the radial and azimuthal velocity, respectively.
The no-slip and no-penetration boundary conditions along the rigid wall atθ = α and the
constant shear stressω0 and no-penetration conditions along the liquid/gas interface atθ = 0
are

θ = 0 : ∂rψ = 0, ∂2
θ ψ =

{
ω0r

2, r 6 a,
0, r > a,

θ = α : ∂rψ = 0, ∂θψ = 0, (3)

whereω0 is a positive constant. These boundary conditions are to model the real conditions
near a cold thermocapillary corner. Owing to the method of solution the region of constant
shear stress is limited here to a finite lengtha beyond which the surface is assumed stress-free.

3. Similarity solution

The problem (1, 3) witha→∞ admits a scale-independent local similarity solution

ψ = ω0r
2f (θ), (4)

wheref must satisfy

(∂4
θ + 4∂2

θ )f (θ) = 0, (5)

subject to the boundary conditions

f (α) = f ′(α) = f (0) = f ′′(0)− 1= 0. (6)
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The solution is

f (θ) = A cos 2θ + B sin 2θ+ Cθ +D, (7)

with the four integration constants

A = −1

4
, B = 1

4

cos 2α + 2α sin 2α− 1

sin 2α− 2α cos 2α
,

C = 1

2

cos 2α − 1

sin 2α− 2α cos 2α
, D = 1

4
, (8)

determined by (6). This solution has also been given by Canright [10]. The vorticityω =
−4ω0(Cθ +D) depends only on the angleθ . Therefore, the solution is singular at the origin
r = 0. The solution becomes singular everywhere in the volume when

sin 2α− 2α cos 2α = 0. (9)

The only nontrivial root in the interval[0, π ] is αc = 0·715 π = 2·2467 = 128·7◦. At
this contact angle, the plane on which the vorticity vanishes coincides with the free surface.
The boundary conditions (3), however, impose a constant nonzero vorticityω = −ω0 on
the free surface. Therefore, the vorticity field must exhibit strong gradients all along the free
surface whenα ≈ αc. As a result high velocity gradients arise and the streamlines become
asymptotically dense forα → αc. For α < αc andω0 > 0 the flow on the free surface is
directed towards the corner(u(θ = 0) < 0), while the similarity solution predicts a flow away
from it (u(θ = 0) > 0) for α > αc. Since the solution breaks down atα = αc, the question
arises, whether the similarity solution is a local solution of (1,3) forα > αc. To answer this
question, we solve the problem without the assumption of separability.

4. General solution

We seek a the solution of (1, 3) using the Mellin transformation in a way described by Tranter
[13]. The Mellin transform is given by

ψ̄(p, θ) =
∫ ∞

0
rp−1ψ(r, θ)dr, (10)

while the back-transformation is

ψ(r, θ) = 1

2π i

∫ c+i∞

c−i∞
r−pψ̄(p, θ)dp, (11)

wherep ∈ C andc ∈ R. As we shall see later on, we will have to use<(p) = −1. Therefore,
the transformψ̄ exists, ifψ satisfies the asymptotic relations

ψ(r, θ) =
{
O(r1+ε), r → 0,

O(r1−ε), r →∞, (12)

which must be checkeda posteriori.
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Multiplying (1) by rp+3 and integrating from 0 to∞we obtain the transformed biharmonic
equation

[∂4
θ + ((p + 2)2+ p2)∂2

θ + p2(p + 2)2]ψ̄ = 0, (13)

where we have used that the boundary terms vanish, since they areo(rε) for r → 0 and o(r−ε)
for r →∞, respectively. Similarly, one obtains the transformed boundary conditions

θ = 0 : ψ̄ = 0, ∂2
θ ψ̄ = ω0

∫ a

0
rp−1r2 dr = ω0

ap+2

p + 2
,

θ = α : ψ̄ = 0, ∂θ ψ̄ = 0. (14)

The solution of (13) has the form

ψ̄ = Aeipθ + B e−ipθ + C ei(p+2)θ +D e−i(p+2)θ . (15)

Inserting this into the boundary conditions, we obtain the unique solution

ψ̄(p, θ) = ω0a
p+2

4

F(θ, p)

W(p)(p + 1)(p + 2)
, (16)

with

F(θ, p) = (p + 1) sin[(p + 2)θ − 2α]
− sin[(p + 2)θ − 2(p + 1)α] − p sin[(p + 2)θ]
−(p + 2) sin[pθ] + (p + 1) sin[pθ + 2α] + sin[pθ − 2(p + 1)α], (17)

and

W(p) = (p + 1) sin[2α] − sin[2(p + 1)α]. (18)

Since we shall have to integratēψ along<(p) = −1, it is important to note that̄ψ has a
removable singularity atp = −1 (the denominator has a double zero, andF = F ′ = 0).

For later use we now establish a symmetry which relatesψ̄(−p) to ψ̄(p − 2). It is readily
confirmed that

F(θ,−p) = F(θ, p − 2), (19)

W(−p) = −W(p − 2). (20)

From these properties we obtain

ψ̄(−p, θ) = − p

p − 2
a−2(p−1)ψ̄(p − 2, θ), (21)
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which is required to find the corresponding symmetry forψ in the physical space. To that end,
consider the back-transformation (11) from which follows

∂r

[
1

r2
ψ(r, θ)

]
= 1

2π i

∫ c+i∞

c−i∞
(−p − 2)r−p−3ψ̄(p)dp

p→−p= 1

2π i

∫ −c+i∞

−c−i∞
(p − 2)rp−3ψ̄(−p)dp

using(21)= 1

2π i

∫ −c+i∞

−c−i∞
(−p)rp−3a−2(p−1)ψ̄(p − 2)dp

= − 1

r2
∂r

{( r
a

)2 1

2π i

∫ −c+i∞

−c−i∞

(
a2

r

)−(p−2)

ψ̄(p − 2)dp

}

q=p−2= − 1

r2
∂r

{( r
a

)2 1

2π i

∫ −c+i∞−2

−c−i∞−2

(
a2

r

)−q
ψ̄(q)dq

}
. (22)

Settingc = −1 we obtain

∂r

[
1

r2
ψ(r, θ)

]
= − 1

r2
∂r

[( r
a

)2
ψ

(
a2

r
, θ

)]
. (23)

This formula enables us to establish the behavior for smallr ′ = a2/r → 0 once the
asymptotic behavior forr →∞ is known.

The solution of (1, 3) withc = −1 reads

ψ(r, θ) = 1

2π i

∫ −1+i∞

−1−i∞
r−pψ̄(p, θ)dp

= ω0a
2

4

1

2π i

∫ −1+i∞

−1−i∞

(a
r

)p F (θ, p)

W(p)(p + 1)(p + 2)
dp. (24)

For r > a the integrand vanishes at infinity and the integral can be closed over the right half
plane. The residue theorem yields

ψ(r, θ) = −ω0a
2

4

∑
n

<(pn)>−1

Res

{(a
r

)pn F (θ, pn)

W(pn)(pn + 1)(pn + 2)

}
, (25)

wherepn denotes the poles of the integrand in (24). Since we can use the residue theorem
only for r > a the symmetry relation (23) is necessary to obtain the behavior forr < a.

Up to the values ofpn for whichF(θ, p) is zero, the poles of the integrand are determined
by the zeros ofW(p) for <(p) > −1. They have been analyzed by Moffatt and Duffy [4],
who showed that the zeros are simple except for special intersection points. For simple poles
we get

ψ(r, θ) = −ω0a
2

4

∑
n

<(pn)>−1

(a
r

)pn F (θ, pn)

W ′(pn)(pn + 1)(pn + 2)
, (26)
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where

W ′(pn) = sin 2α− 2α cos[2(pn + 1)α] 6= 0. (27)

The leading order term forr → ∞ is due to the residue of the pole having the smallest real
part ofp. Forα < αc, the corresponding pole ofW(p) is p0 = 0 [4]. It is real and simple for
α 6= αc. However, sinceF(θ, p0) = 0 andF ′(θ, p0) 6= 0 with

∂F (θ, p)

∂p

∣∣∣∣
p→0

= sin[2θ − 2α] + 2α cos[2θ − 2α] − sin[2θ]

−2θ + sin[2α] + (2θ − 2α) cos[2α], (28)

the integrand∼ F(2,p)/W(p) has no pole atp0 = 0 in contrast to the hinged plate problem
considered in [4]. Thus forα < αc all poles have<(pn) > 0.

5. Asymptotic behavior

We are now in the situation to calculate the solution for small distances from the vertex.
Integrating the symmetry relation (23) we get

ψ

(
a2

r
, θ

)
= ω0a

4

r2

[
∂pF (θ,0)

2W ′(0)
+ 1

4

∑
n

(a
r

)pn F (θ, pn)

W ′(pn)(pn + 1)pn

]
, r > a, (29)

or, with r ′ = a2/r < a, and dropping the prime

ψ(r, θ) = ω0r
2

[
∂pF (θ,0)

2W ′(0)
+ 1

4

∑
n

( r
a

)pn F (θ, pn)

W ′(pn)(pn + 1)pn

]
, r < a. (30)

Since <(pn)>1 for α <αc, the leading order term forr→0 is produced by
∂pF (θ,0)/(2W ′(0)) = f (θ). It arises here in the course of integration, since the symmetry
relation (23) destroys all information on the angular dependence for functions∼ r2. This is
a consequence of the symmetry relation being differential rather than algebraic, as for the
hinged plate problem. We have thus seen that the similarity solution (4) is in fact the relevant
solution forα < αc.

In the caseα > αc the pole with the smallest real part,p1, is again simple and real and
satisfies [4]

0> p1 > −1
2, for αc < α 6 π. (31)

Thus the leading order term in (30) is due to the polep1 and we get the asymptotic form of
the stream function

ψ(r, θ) ∼ ω0

4
r2
( r
a

)p1 F(θ, p1)

W ′(p1)(p1+ 1)p1
, r → 0. (32)

This is obviously not the similarity solution. It is easily seen that the conditions (12) for the
existence of the integral (10) are satisfied.

204525.tex; 10/08/1999; 9:51; p.7



214 Hendrik C. Kuhlmann et al.

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

�I�θ�� α π��
)�θ�S�� α �π��)

� θ
�S

��
�I
� θ
�

>D
UE

LW
UD

U\
X
Q
LW
V
@

[  θ�α
Figure 2. Angular dependence of the asymptotic solution for the stream function, normalized to the maximum
value ofF . Full line: α = π/2; dashed line:α = 7π/8.

To check whether the solution of the Stokes equation forα > αc is a valid approximation
to the respective solution of the Navier-Stokes equation, we compare the order of magnitude
of viscous and inertial terms and find that the viscous ones dominate, only if

r �
(
ν

ω0

)1/(2+p1)

ap1/(2+p1)
a→∞−→ 0, (33)

whereν is the kinematic viscosity. Thus the radial distance from the vertex within which (32)
is a valid approximation to the Navier-Stokes equation shrinks to zero asa →∞. Therefore,
inertia terms cannot be neglected for the infinite wedge problem, no matter how small the
length scale is.

We now consider the critical angleα = αc. In [4], the integrand has a double zero atp1 = 0
andα = αc. Here the pole is simple, becauseF = W(p)(p+1)(p+2) = {W(p)(p+1)(p+
2)}′ = 0,F ′ 6= 0, and{W(p)(p + 1)(p + 2)}′′ 6= 0 for p = 0. The residue of the simple pole
atα = αc with p1 = 0 is given by

Res

{(a
r

)p1 F(θ, p1)

W(p1)(p1+ 1)(p1 + 2)

}
= 1

W ′′(0)
∂F (θ, p)

∂p

∣∣∣∣
p=0

. (34)

Using (34) and the symmetry relation (23), we observe that the stream function for small
r → 0 takes the asymptotic form

ψ(r, θ) ∼ ω0

2W ′′(0)
∂F (θ, p)

∂p

∣∣∣∣
p=0

r2 log
r

a
, r → 0. (35)

6. Discussion

The radial dependence of the asymptotic form of the solutions (4), (35), and (32), namely
∼ r2, ∼ r2 log r, and∼ r2+p1, is the same as for the hinged plate problem considered by
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(a)

(b)

Figure 3. Streamlines (right) and isotherms (left) in a liquid bridge under zero gravity conditions for0 = 1,
Pr= 1, Bi = 0, Re= 10−5 (a) and Re= 2× 103 (b). The upper and lower contact angles areα = 7π/8.

Moffatt and Duffy [4]. As can be seen in Figure 2, the angular dependence of the supercritical
solution forα = 7π/8 > αc (p1(7π/8) = −0·3403) is very similar to that of the subcritical
solution forα = π/2< αc.

The present investigation is motivated by the problem of thermocapillary flow near a
contact line in an important model for the float-zone crystal-growth process. Hence, we com-
pare the present asymptotic results with numerical calculations of the flow in the so-called
half-zone model; seee.g. [11]. This model consists of an incompressible liquid held by an
asymptotically large mean surface tension between two concentric rigid disks of equal radii
but different temperatures. In this limit the interface has a constant curvature and its shape
is statically determined. Tangential gradients of the surface temperature induce shear stresses
on the free surface that drive the fluid motion. In the absence of gravity the contact angle in
barrel-shaped half-zones is larger thanα = π/2 and numerical problems may be encountered
if the contact angle exceeds its critical value.

For a comparison we calculated the two-dimensional stationary flow in a half-zone with
contact anglesα = π/2 andα = 7π/8 for Prandtl number Pr= 1, Biot number Bi= 0, aspect
ratio0 = 1, and Reynolds number Re= 10−5 (see [11] for a definition of the parameters).

The numerical code uses a finite difference method on a 101×101 grid with grid stretching
factors of 0·90 and 0·95 which gives a minimum grid spacing near the boundaries of 2·9×10−4

(axially) and 3·1× 10−4 (radially), respectively, in units of the disks’ radii. Figure 3 shows
the streamlines and isotherms in a liquid bridge withα = 7π/8 for Re = 10−5 (a) and
Re= 2× 103 (b).
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216 Hendrik C. Kuhlmann et al.

Figure 4. Dependence of the asymptotic solutions (4) and (32) on the distancer from the vertex along the bisection
of the wedge angle. Full line:α = π/2; dashed line:α = 7π/8. The finite difference numerical data for Re= 10−5

near the cold corner are respresented by plus signs and asterisks.

Figure 5. Azimuthal dependence of the stream function forα = π/2. Full line: Asymptotic solution, dots:
Normalized numerical result atr = 5× 10−3 from the cold corner.

The asymptotic behavior of the flow field near the hot (z = 0·5) and cold (z = −0·5)
corners is the same. The dependence of the absolute value of the stream function on the
distancer from the cold corner contact point in units of the disks radii is shown in Figure 4
along the bisection of the contact angle. For a contact angle ofα = π/2 the slopes computed
from successive pairs of numerical data in Figure 4 range from 1·750 to 2·003 (r decreasing).
The latter value is in excellent agreement with the theoretical value 2·0. For the large contact
angleα = 7π/8 the agreement is still reasonable. Here the slopes range from 1·489 to 1·580.
The latter value is only 5 percent smaller than the theoretical value 1·660. From the curvature
of the interpolated numerical data it is expected that the asymptotic regime is even better
approached for values of the radial coordinate less than 10−3 in this case.
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The local flow in a wedge217

Figure 6. Azimuthal dependence of the stream function forα = 7π/8. Full line: Asymptotic solution, dots:
Normalized numerical result atr = 5× 10−3 from the cold corner.

Table 1. Comparison at selected anglesθ/α between the nu-
merical (r = 5×10−3, Re= 10−5) and theoretical data plotted
in Figures 5 and 6.

α = π/2 α = 7π/8

θ/α (fnum− f )/f θ/α (Fnum− F)/F

0·162 0·0022 0·076 0·14

0·519 −0·0008 0·206 0·05

0·618 −0·0012 0·521 −0·03

0·766 −0·0015 0·725 −0·02

0·877 −0·0017 0·866 −0·01

The angular dependence of the stream function is shown in Figures 5 and 6 for a distance
r = 5× 10−3 from the cold corner contact line and for a Reynolds number Re= 10−5. The
deviation from the theoreticalθ dependence is quantified in Table 1 for representative values of
θ . Since the value ofa is not defined in the numerical calculations, theθ dependence can only
be compared up to a constant factor. To that end we have normalized the numerical datafnum

andFnum by multiplication with (f/fnum)θ/α=0·389 and (F/Fnum)θ/α=0·336, respectively. The
relative deviations range from−0·2 percent to 0·2 percent forα = π/2. For the large contact
angle the differences are higher (up to 14 percent). This is attributed to the high resolution
required, and not provided by the present numerical grid, to fully resolve the asymptotic
behavior near the contact line forα = 7π/8.

The Reynolds numbers in applications are usually much higher than 10−5. For Re= 2×
103 the isotherms become more crowded near the contact lines and the streamlines become
’sucked’ into the wedges (cf. Figure 3(b)). Yet, the present analysis likewise applies to this
case. Merely, the resolution must be increased to numerically resolve the flow on the small
scales on which it takes its asymptotic form.
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218 Hendrik C. Kuhlmann et al.

The foregoing comparison shows the relevance of the present asymptotic solution for the
flow in technical applications like,e.g. the float-zone process. It provides a means to check
the accuracy of numerical calculations near the contact point. Care must be taken to properly
resolve the corner flow. An insufficient numerical grid resolution may, otherwise, fake an un-
physical flow reversal near the corner. The reason for this effect is probably the sharp increase
of the velocity components with the distance from the corner which scale like∼ r1+p1 and
increase with infinite slope atr = 0.
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